首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   630篇
  免费   34篇
  国内免费   30篇
  2023年   7篇
  2022年   6篇
  2021年   11篇
  2020年   14篇
  2019年   18篇
  2018年   15篇
  2017年   12篇
  2016年   16篇
  2015年   16篇
  2014年   37篇
  2013年   35篇
  2012年   14篇
  2011年   22篇
  2010年   18篇
  2009年   30篇
  2008年   23篇
  2007年   33篇
  2006年   29篇
  2005年   21篇
  2004年   21篇
  2003年   22篇
  2002年   18篇
  2001年   17篇
  2000年   7篇
  1999年   16篇
  1998年   10篇
  1997年   11篇
  1996年   10篇
  1995年   14篇
  1994年   10篇
  1993年   9篇
  1992年   10篇
  1991年   6篇
  1990年   6篇
  1989年   14篇
  1988年   14篇
  1987年   10篇
  1986年   6篇
  1985年   8篇
  1984年   13篇
  1983年   3篇
  1982年   7篇
  1981年   6篇
  1980年   7篇
  1979年   4篇
  1978年   6篇
  1977年   6篇
  1973年   8篇
  1972年   5篇
  1970年   5篇
排序方式: 共有694条查询结果,搜索用时 46 毫秒
81.
According to current phylogenetic theory, both electroreceptors and electric organs evolved multiple times throughout the evolution of teleosts. Two basic types of electroreceptors have been described: ampullary and tuberous electroreceptors. Ampullary‐type electroreceptors appeared once in the common ancestor of the Siluriformes+Gymnotiformes (within the superorder Ostariophysi), and on two other occasions within the superorder Osteoglossomorpha: in the African Mormyriformes and in the African Notopteriformes. Tuberous receptors are assumed to have evolved three times; all within groups that already possessed ampullary receptors. With the exception of a single catfish species, for which studies are still lacking, all fish with tuberous electroreceptors also have an electric organ. Tuberous electroreceptors are found in the two unrelated electrogenic teleost lineages (orders Gymnotiformes and Mormyriformes) and in one non‐electrogenic South American catfish species (order Siluriformes). Electric organs evolved eight times independently among teleosts: five of them among the ostariophysans (once in the gymnotiform ancestor and in four siluriform lineages), once in the common ancestor of Mormyriformes, and in two uranoscopids. With the exception of two uranoscopid genera, for which no electroreceptive capabilities have been discovered so far, all electric organs evolved as an extension of a pre‐existing electroreceptive (ampullary) condition. It is suggested that plesiomorphic electric organ discharges (EODs) possessed a frequency spectrum that fully transgressed the tuning curve of ampullary receptors, i.e. a signal such as a long lasting monophasic pulse. Complex EOD waveforms appeared as a derived condition among electric fish. EODs are under constant evolutionary pressure to develop an ideal compromise between a function that enhances electrolocation and electrocommunication capabilities, and thereby ensures species identity through sexual and behavioural segregation, and minimizes the risk of predation.  相似文献   
82.
该试验以荒漠区主要建群种红砂幼苗为研究对象,设置适宜水分(CK)、轻度干旱(MD)、中度干旱(SD)和重度干旱(VSD)4个胁迫处理(即田间持水量的80%、60%、40%和20%),采用盆栽控水试验,分别测定干旱胁迫15、30、45和60 d时红砂幼苗的叶、茎、粗根和细根中非结构碳水化合物(NSC)及其组分的含量,分析不同胁迫强度下不同干旱持续时间红砂幼苗NSC的动态变化及各组分差异,以揭示红砂NSC对干旱胁迫的响应机制。结果表明:(1)干旱胁迫强度和胁迫持续时间对红砂幼苗不同器官NSC及其组分均有显著影响,其中胁迫持续时间对NSC动态变化的影响尤为显著。(2)干旱胁迫初期,红砂叶中的NSC含量呈下降趋势,而茎中的NSC含量呈上升趋势,粗根和细根中NSC含量在各胁迫处理下基本保持稳定。(3)干旱胁迫后期,红砂叶和茎中的可溶性糖、淀粉和NSC含量逐渐增加,而粗根和细根中的淀粉和NSC含量呈下降趋势(中度干旱除外),且这一时期重度干旱处理下各器官可溶性糖和NSC的含量明显高于CK。研究发现,重度干旱胁迫能显著诱导提高红砂幼苗不同器官中的NSC含量,并通过分解根中淀粉和增加叶片中可溶性糖含量的方式来调节细胞渗透势平衡,以维持细胞活力,进而保持红砂在干旱胁迫后期的存活。  相似文献   
83.
Gravitaxis in Drosophila melanogaster: a forward genetic screen   总被引:1,自引:0,他引:1  
Perception of the earth's gravitational force is essential for most forms of animal life. However, little is known of the molecular mechanisms and neuronal circuitry underlying gravitational responses. A forward genetic screen using Drosophila melanogaster that provides insight into these characteristics is described here. Vertical choice mazes combined with additional behavioral assays were used to identify mutants specifically affected in gravitaxic responses. Twenty-three mutants were selected for molecular analysis. As a result, 18 candidate genes are now implicated in the gravitaxic behavior of flies. Many of these genes have orthologs across the animal kingdom, while some are more specific to Drosophila and invertebrates. One gene (yuri) located close to a known locus for gravitaxis has been the subject of more extensive analysis including confirmation by transgenic rescue.  相似文献   
84.
The stomatogastric ganglion (STG) and the cardiac ganglion (CG) of decapod crustaceans are modulated by neuroactive substances released locally and by circulating hormones released from neuroendocrine structures including the pericardial organs (POs). Using nanoscale liquid chromatography electrospray ionization quadrupole-time-of-flight tandem mass spectrometry and direct tissue matrix-assisted laser desorption/ionization Fourier transform mass spectrometry we have identified and sequenced a novel neuropeptide, GAHKNYLRFamide (previously misassigned as KHKNYLRFamide in a study that did not employ peptide derivatization), from the POs and/or the stomatogastric nervous system (STNS) of the crabs, Cancer borealis, Cancer productus and Cancer magister. In C. borealis, exogenous application of GAHKNYLRFamide increased the burst frequency and number of spikes per burst of the isolated CG and re-initiated bursting activity in non-bursting ganglia, effects also elicited by the FMRFamide-like peptides (FLPs) SDRNFLRFamide and TNRNFLRFamide. In the intact STNS (which contains the STG), exogenous application of GAHKNYLRFamide increased the frequency of the pyloric rhythm and activated the gastric mill rhythm, effects also similar to those elicited by SDRNFLRFamide and TNRNFLRFamide. FLP-like immunoreactivity in the POs and the STNS was abolished by pre-adsorption with the synthetic GAHKNYLRFamide. Different members of the FLP family exhibited differential degradation in the presence of extracellular peptidases. Taken collectively, the amino acid sequence of GAHKNYLRFamide, the blocking of FLP-like immunostaining, and its physiological effects on the CG and STNS suggest that this peptide is a novel member of the FLP superfamily.  相似文献   
85.
Peng YB  Zou C  Wang DH  Gong HQ  Xu ZH  Bai SN 《The New phytologist》2006,170(3):459-466
Abscisic acid (ABA) is known to function in plant stress responses and seed dormancy, and much is known about its detailed mechanisms of signal transduction. Recent studies suggest that this hormone may also play important roles in sugar signaling and assimilate distribution during fruit development. However, little is known about the role of ABA in actively growing or differentiating fruits and other plant organs or tissues. To explore whether ABA functions during the early development of reproductive organs, we carried out ABA immunolocalization using monoclonal antibodies. The specific ABA accumulation pattern was verified by gas chromatography-mass spectrometry (GC-MS). ABA was not only detected in primordial cells of flower organs, but was also detected in nursing cells (e.g. tapetum and integuments), which function in supplying nutrition for germ cell development. These findings suggest that, in addition to its well-known function as a 'negative hormone', ABA may play some 'positive' roles during plant development, including possible involvement in the regulation of assimilate distribution.  相似文献   
86.
87.
对芸香的茎、叶及花等器官的形态结构进行了较为系统的观察研究,对花芽形成及开花过程进行了客观描述.芸香花有顶生和侧生两种,柱头为"湿柱头",叶片具有典型旱生型植物特点,茎叶中均含有簇晶和油腔,这些特征可作为分类学上鉴别该物种的性状.茎的淀粉积累过程:花前期淀粉积累很少(6月下旬),10月下旬达高峰,之后略有减少并保持稳定直至被冻死.对此结合当地温度及水分条件进行了抗寒、抗旱的讨论.  相似文献   
88.
Recordings were made from the nerve innervating the stretch receptors of the abdominal muscle receptor organs and slow extensor muscles of tethered crayfish, Cherax destructor, during so-called non-giant swimming. The stretch receptors were active during the flexor phase of swimming but the duration and pattern of activity varied from cycle to cycle. Their pattern of firing was modified by the activity of the large accessory neurons which make direct inhibitory synapses upon them. Neither the stretch receptors nor the accessory neurons were active during the extensor phase of the cycle. The timing and extent of tailfan movements during the period of stretch receptor activity were measured from video records before and after the stretch receptor nerves were cut in the second to fifth segments. The promotion of the tailfan during flexion was significantly delayed and the minimum angle to which the uropods were remoted at the end of flexion significantly larger in denervated animals. We propose that afferent information from the stretch receptors coordinates the timing and extent of tailfan movements according to variations in the positioning and movement of the abdominal segments such that the hydrodynamic efficiency of the tailfan is enhanced on a cycle by cycle basis during non-giant swimming.Abbreviations A# abdominal segment number - Acc accessory neuron - LUU large unidentified unit - MRO muscle receptor organ - NGS non-giant swimming - SEMN slow extensor motor neuron - SR stretch receptor neuron  相似文献   
89.
The renal organs of 32 species of cephalopods (renal appendage of all cephalopods, and renal and pancreatic appendages in decapods) were examined for parasite fauna and for histological comparison. Two phylogenetically distant organisms, dicyemid mesozoans and chromidinid ciliates, were found in 20 cephalopod species. Most benthic cephalopods (octopus and cuttlefish) were infected with dicyemids. Two pelagic cephalopod species, Sepioteuthis lessoniana and Todarodes pacificus, also harbored dicyemids. Chromidinid ciliates were found only in decapods (squid and cuttlefish). One dicyemid species was found in branchial heart appendages of Rossia pacifica. Dicyemids and chromidinids occasionally occurred simultaneously in Euprymna morsei, Sepia kobiensis, S. peterseni, and T. pacificus. The small-sized cephalopod species, Idiosepius paradoxus and Octopus parvus, harbored no parasites. Comparative histology revealed that the external surface of renal organs varies morphologically in various cephalopod species. The small-sized cephalopod species have a simple external surface. In contrast, the medium- to large-sized cephalopod species have a complex external surface. In the medium- to large-sized cephalopod species, their juveniles have a simple external surface of the renal organs. The external surface subsequently becomes complicated as they grow. Dicyemids and chromidinids attach their heads to epithelia or insert their heads into folds of renal appendages, pancreatic appendages, and branchial heart appendages. The rugged and convoluted external surface provides a foothold for dicyemids and chromidinids with a conical head. They apparently do not harm these tissues of their host cephalopods.  相似文献   
90.
Our ability to model spatial distributions of fish populations is reviewed by describing the available modelling tools. Ultimate models of the individual's motivation for behavioural decisions are derived from evolutionary ecology. Mechanistic models for how fish sense and may respond to their surroundings are presented for vision, olfaction, hearing, the lateral line and other sensory organs. Models for learning and memory are presented, based both upon evolutionary optimization premises and upon neurological information processing and decision making. Functional tools for modelling behaviour and life histories can be categorized as belonging to an optimization or an adaptation approach. Among optimization tools, optimal foraging theory, life history theory, ideal free distribution, game theory and stochastic dynamic programming are presented. Among adaptation tools, genetic algorithms and the combination with artificial neural networks are described. The review advocates the combination of evolutionary and neurological approaches to modelling spatial dynamics of fish.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号